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A theory of the formation of nanoscale porous structures in oxides of metals grown by anodization is
developed. It is shown that a growing oxide layer can become unstable which yields the formation of a
spatially irregular array of pores. The instability is shown to result from a nonlinear dependence of electro-
chemical kinetics at the metal-oxide and oxide-electrolyte interfaces on the overpotential which is governed by
the Butler-Volmer relation. The conditions for the instability of the oxide layer are found. The dependence of
the oxide conductivity on the electric field is taken into account and is shown to have a destabilizing effect. A
weakly nonlinear analysis is performed and it shows that the system evolution near the instability threshold is
described by the Kuramoto-Sivashinsky equation. Farther from threshold, in the long-wave approximation, a
system of strongly nonlinear equations is derived and solved numerically; this system describes the formation
of deep irregular pores. In a particular case, a self-similar solution describing the propagation of a pore with a
paraboloidal shape is found.
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I. INTRODUCTION

Spontaneous formation of nanoscale pores in an oxide
layer growing at a metal-electrolyte interface during the
metal anodization process was observed for several metals,
such as aluminum �1,2�, titanium �3–5�, and tin �6�. The most
striking example is self-assembly of spatially regular, hex-
agonally ordered arrays of nanoscale pores in aluminum ox-
ide �7–10� that can be used as templates for fabrication of
various nanostructures �11–14�. However, the formation of
spatially ordered pores was observed only in alumina, under
specific conditions �9,15,16�, while irregular porous struc-
tures were observed to form more easily, in alumina �10,17�,
in oxides of other metals grown by anodization �3,4,6�, as
well as in anodically formed silica �18–20�.

Despite a large number of experimental studies of the
formation of nanoporous structures in anodic metal oxides,
there were few theoretical studies of this process. In �21,22�
a growth of a single pore was considered. Also, in �22� a
model for the instability mechanism leading to the pore for-
mation, based on field-assisted oxide dissolution, was pro-
posed. The model formulated in �22� was recently further
developed in �23,24�. It was shown that the oxide layer in-
stability results from the positive feedback between the rates
of electrochemical reactions at the oxide-electrolyte interface
and the overpotentials, described by the Butler-Volmer rela-
tion. It was also shown that the wavelength selection mecha-
nism, which determines the average pore diameter, can be
associated with the effect of the surface energy on the elec-
trochemical kinetics. Finally, a mechanism for the formation
of spatially regular, hexagonally ordered pore arrays in alu-
minum oxide was proposed. It was shown that self-assembly
of spatially regular patterns in this system can result from the
effect of elastic stress in the growing oxide layer on the
kinetics of electrochemical reactions.

The main factor that determines the formation of porous
structures in a growing oxide is the spatial distribution of
electric field inside the oxide layer. In �23,24� it was de-
scribed by a Laplace equation for the electric potential that
follows from the assumption of a constant electric conduc-
tivity of the oxide. However, the latter is determined by the

migration of oxygen ions which is known to be an activated
process that strongly depends on the applied electric field
�25�. Also, the effect of overpotential on the rate of the oxi-
dation reaction at the metal-oxide interface was neglected;
although for aluminum this approximation is valid, it may be
an oversimplification for other systems.

In this paper we present further development of the
theory described in �23,24� and take into account two impor-
tant effects: the nonlinear dependence of the oxide conduc-
tivity on electric field, and the effect of overpotential on
the oxidation reaction at the metal-oxide interface. Also,
we expand the nonlinear analysis developed in �24� and de-
rive and numerically solve strongly nonlinear equations
that can describe the formation of pores in the long-wave
approximation far from the instability threshold.

II. FORMULATION OF THE PROBLEM

The model formulated here is a modification of the model
formulated in �23,24�. Consider an electrolytic cell with a
metallic anode in contact with an electrolyte. When a voltage
is applied to the electrolytic cell, the metal surface undergoes
anodization: it reacts with the electrolyte, which results in a
layer of the metal oxide growing on the surface of the anode.
Typically, after the formation, the growth of the oxide layer
is sustained by the oxidation reaction that occurs due to elec-
tromigration of oxygen and hydroxyl ions through the oxide
toward the metal-oxide �MO� interface. At the same time,
dissolution of the oxide occurs at the oxide-electrolyte �OE�
interface. The interfacial electrochemical reactions and the
ion migration through the oxide layer are activated pro-
cesses. Thus, the rates of electrochemical reactions at MO
and EO interfaces, as well as the ion mobility, depend
strongly on the applied voltage �25�. Since the conductivity
of the oxide is much less than that of the metal and the
electrolyte, we consider only the dynamics of the electric
field in the oxide layer, assuming a constant voltage V at the
metal side of the MO interface and a zero voltage at the
electrolyte side of the OE interface.

We introduce a Cartesian coordinate system with the z
axis normal to the initially planar oxide layer and in-plane

PHYSICAL REVIEW E 74, 041606 �2006�

1539-3755/2006/74�4�/041606�9� ©2006 The American Physical Society041606-1

http://dx.doi.org/10.1103/PhysRevE.74.041606


coordinates x= �x ,y�. The shapes of the MO and OE
interfaces are described by z=�1�x , t� and z=�2�x , t�, respec-
tively �see Fig. 1�. The dynamics of the system can be de-
scribed by the following equations and boundary conditions
for the electric potential in the oxide layer, ��x , t�, and the
interfacial shapes �1,2:

� · ���E� � �� = 0, �1�

z = �1�x,t�: − ��E��n� = koe�e�V−��, �2�

vn
�1� = − bokoe�e�V−��, �3�

z = �2�x,t�: − ��E��n� = kde�e� − k̄de−�e�, �4�

vn
�2� = − bdkde�e� + b̄dk̄de−�e�. �5�

Equation �1� describes the conservation of charge in the ox-
ide layer, with the conductivity ��E� depending, according to
�25�, on the strength of the electric field, E= ����,

��E� = �0f�E� � �0
sinh�pE�

pE
, �6�

where p=�e / �kBT�. Here � is the “activation length,” e is the
electron charge, kB is the Boltzmann constant, and T is the
absolute temperature �25�. The boundary conditions �2� and
�4� are the Butler-Volmer relations �25� for the electron trans-
fer reactions at the MO and OE interfaces, respectively,
with ko and kd being the rates of metal oxidation and oxide

dissolution, respectively, and k̄d being the rate of the reaction
inverse to dissolution �oxide reformation�. The coefficient
�e=e / �2kBT�, where e is the electron charge and 1/2 is the
so-called symmetry factor �25�. The rate constants ko, kd, and

k̄d depend on the concentration �pH� of the electrolyte, as
well as on the curvature of the interfaces, due to the depen-
dence of electrochemical reaction activation energies on the
Laplace pressure, according to the transition state theory
�26–28�. Thus, we set

ko = ko
0e�om1, kd = kd

0e�dm2, k̄d = k̄d
0e−�̄dm2, �7�

where m1,2 are the mean curvatures of the interfaces �1,2
�positive for convex surfaces�, and the positive parameters
�0, �d, and �̄d are “activation capillary lengths,” proportional
to the derivatives of the corresponding activation energies
with respect to the interfacial curvatures �see �24� for more
details�. Relations �7� describe a natural physical mechanism
providing for a short-wave cutoff of the oxide layer instabil-
ity �see below�. Note, however, that other cutoff mecha-
nisms, e.g., associated with some details of chemical kinetics
at a curved interface, could also be possible �29�. The

prefactors ko
0, kd

0, and k̄d
0 depend on the electrolyte pH which

can be an important factor determining the morphology of
the forming porous structures �5,20–22�; in the context of the
present paper, however, we do not analyze this dependence.
The boundary conditions �3� and �5� describe the motion of
the interfaces due to electrochemical reactions. Here, �n de-
notes the normal derivative,

vn
�1,2� =

��1,2/�t

�1 + ���1,2�2
, �8�

and the parameters bo, bd, and b̄d are the corresponding Far-
aday coefficients.

We introduce the length scale L=V�0 /kd
0, the time scale

�=V�0 / �bd�kd
0�2�, and the voltage scale V, and rewrite the

system �1�–�5� in the following dimensionless form:

� · �f�E� � �� = 0, �9�

z = �1�x,t�: − f�E��n� = �1e��1−��+�1m1, �10�

vn
�1� = − 	1�1e��1−��+�1m1, �11�

z = �2�x,t�: − f�E��n� = e��+�2m2 − �2e−��−�̄2m2, �12�

vn
�2� = − e��+�2m2 + 	2�2e−��−�̄2m2, �13�

where f�E�=sinh�p̄E� / �p̄E�, �1=ko
0 /kd

0, �2= k̄d
0 /kd

0,

	1=bo /bd, 	2= b̄d /bd, �=V�e, ��1,2 , �̄2�= ��o,d , �̄d� /L, and
p̄= pV /L. For simplicity, we use the same notations for di-
mensionless coordinates, time, potential, field, and interface
shapes.

III. STEADY-STATE SOLUTION

The problem �9�–�13� has the following steady-state
solution corresponding to an oxide layer with a constant
thickness l, moving with a constant speed vs:

�1s = − vst, �2s = l − vst, �s = − Es�z − �1s� + Ds,

�14�

where Ds=1−�−1 ln�Esf�Es� /�1�, the oxide layer thickness

l =
1

Es
�1 +

1

�
ln	�1

�2

	1 − 1

1 − 	2

� , �15�

and the field Es is the root of the equation

FIG. 1. System setting.
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f�Es�Es = ��2
�1 − 	2�

��	1 − 1��	1 − 	2�
. �16�

For f�E�=sinh�p̄E� / �p̄E�, one obtains

Es =
1

p̄
sinh−1	p̄��2

�1 − 	2�
��	1 − 1��	1 − 	2�


 . �17�

The propagation speed of the oxide layer is

vs = 	1Esf�Es� . �18�

This steady-state solution exists only if 	1
1, 	2�1 or
	1�1, 	2
1, and if

	1 − 1

1 − 	2



�2

�1
e−� � K , �19�

i.e., only for a certain relation between the Faraday coeffi-
cients of the interfacial electrochemical reactions and their
rates. Regions in the parameter plane �	1 ,	2� where the sta-
tionary solution �14�–�18� exists are shown in Fig. 2. Also
note that for �2→0 �K→0�, l→� and Es→0.

One can see also that Es is a decreasing function of the
parameter p̄ that characterizes the dependence of the oxide
conductivity on electric field. The steady-state oxide layer
thickness is an increasing function of this parameter.

IV. LINEAR STABILITY ANALYSIS

In this section we shall perform the linear stability analy-
sis of the steady-state solution �14�–�18� corresponding to a
uniformly propagating, planar oxide layer. Go over to the
moving frame �notations for coordinates are kept the same�,
consider infinitesimal perturbations of the steady-state solu-

tion �̃=�−�s , �̃1,2=�1,2−�1s,2s, and make the coordinate
transformation

t →
t

�Esf�Es�	1
, z → z�1 + Esf��Es�/f�Es� ,

to obtain the following linearized problem:

�zz�̃ + �2�̃ = 0, �20�

z = 0: F�z�̃ = �̃ − Es�̃1 + 1�
2�̃1, �21�

�t�̃1 = �̃ − Es�̃1 + 1�
2�̃1, �22�

z = l̄: F�z�̃ = B�− �̃ + Es�̃2� + 2�
2�̃2, �23�

�t�̃2 = B��− �̃ + Es�̃2� + 2��
2�̃2, �24�

where �2=�xx+�yy is the two-dimensional Laplacian, and

F =
Fs

�Es
, Fs =�1 +

Esf��Es�
f�Es�

, l̄ =
l

Fs
,

B =
1 + 	2 − 2	1

	2 − 1
, B� =

	2 − 	1 + 	2�1 − 	1�
	1�	2 − 1�

,

1 =
�1

�
, 2 =

�2�	2 − 	1� + �̄2�1 − 	1�
��	2 − 1�

,

2� =
�2�	2 − 	1� + �̄2	2�1 − 	1�

�	1�	2 − 1�
.

Taking �̃=��z , t�eik·x, �̃1,2=h1,2�t�eik·x yields
��z�=Ck�t�sinh kz+Dk�t�cosh kz, �k= �k��, and using the

boundary conditions �22� and �24� one obtains for h= � h1

h2
�

�th = Ah , �25�

where the components aij, i,j=1, 2, of the matrix A are

a11 = Fka1,

a22 = B��− a2�sinh kl̄ + Fk cosh kl̄� + Es� − 2�k
2,

a12 = Fka2,

a21 = − B��a1�sinh kl̄ + Fk cosh kl̄� + �Es + 1k2�cosh kl̄� ,

a1 = − �−1�Es + 1k2��Fk sinh kl̄ + B cosh kl̄� ,

a2 = �−1�BEs − 2k2� ,

� = �F2k2 + B�sinh kl̄ + Fk�1 + B�cosh kl̄ .

Take h=h0e�t to obtain the dispersion relation in the form
det�A−�I�=0, where I is the identity matrix. This dispersion
relation is a quadratic equation for � with the coefficients
depending on k and the physical parameters. It has two roots,
corresponding to two modes,

FIG. 2. Region of parameters �gray� where the steady-state
solution �14�–�18� exists.
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�±�k� = T/2 ± �T2/4 − D , �26�

where T=Tr�A� and D=det�A�. The mode �− describes
zigzag perturbations of the oxide layer shape, with
�−�0�=0, which corresponds to the zero mode associated
with the translation symmetry of the system. The mode �+
corresponds to varicose perturbations, and

�+�0� = 2Es
�	1 − 1��	1 − 	2�

	1�	2 − 1�
1

1 + B�1 + l̄/F�
. �27�

Since for the values of 	1,2, for which the stationary solution
�14�–�18� exists �see Fig. 2�, B
0, then �+�0��0 for
	1
1, 	2�1 and �+�0�
0 for 	1�1, 	2
1. In the latter
case, a planar oxide layer is unstable with respect to spatially
homogeneous perturbations and will either continuously
shrink or expand.

Some typical dispersion curves, �+�k� and �−�k�, are
shown in Fig. 3. Note that for some parameter values an
oscillatory branch can appear for some wave numbers. How-
ever, since T
0 for 	1
1 and T�0 for 	1�1, the long-
wave oscillatory instability �for k→0� is impossible in this
system.

We shall further be interested in the case when the vari-
cose mode is damped, i.e., when 	1
1, 	2�1. The zigzag
mode �−�k� becomes unstable if ��2�− /�k2�k=0
0, i.e., for

l 
 �
�	1 − 1��	1 − 	2���2 − �̄2�

	1�1 + 	2� − 2	2
. �28�

Since the denominator of �28� is positive, one concludes that
if �2��̄2 the oxide layer is always unstable with respect to

the zigzag mode, while if �2
�̄2 there is a threshold for the
instability given by �28�. One can see that the oxide layer
becomes unstable when its steady-state thickness, deter-
mined by �15� and �16�, exceeds a certain critical value that
depends on the Faraday coefficients and the activation cap-
illary lengths characterizing the oxide dissolution �and in-
verse� reactions. In terms of dimensional parameters, the in-
stability occurs when the steady-state oxide layer thickness l*

exceeds the following threshold:

l* 

eV

2kBT

�bo − bd��bo − b̄d���d − �̄d�

bo�bd + b̄d� − 2bdb̄d

. �29�

For V=30 V, T=300 K, and �d− �̄d�1–10 nm, one obtains
l*�20–200 nm, which is in accordance with experimental
observations for aluminum oxide. One can see that the criti-
cal thickness of the oxide layer is proportional to the applied
voltage. Note that the activation capillary length of the metal
oxidation reaction, �o, does not affect the stability condi-
tions; it only contributes to stabilization of the short-wave
modes, i.e., to the wavelength selection mechanism. Note
also that the dependence of the oxide conductivity on the
electric field, characterized by the parameter p̄, has a desta-
bilizing effect, since the equilibrium value of the oxide layer
increases with the increase of p̄.

V. WEAKLY NONLINEAR ANALYSIS

As one can see from the linear stability analysis, under
certain conditions the oxide layer can become unstable with
respect to perturbations whose wave number is less than the
cutoff wave number, k�k*. We are interested in the case
when the varicose mode is damped, and the zigzag mode is
characterized by the dependence ��k� shown in Fig. 3�a�.
Near the instability threshold, k*�1, and one can use a
multiple-scale analysis in order to derive a nonlinear evolu-
tion equation that governs the system behavior in this case.
This derivation is standard and the details can be found
elsewhere �30,31�. Here we reproduce only the main steps.

Consider the parameters of the system to be such that the
oxide layer described by the steady-state solution �14�–�18�
is weakly unstable �near the instability threshold�, so that the
dispersion relation for the unstable mode can be expanded as

� = ak2 − bk4, �30�

where a and b are positive,

a =
1

2
	 �2�

�k2 

k=0

= O��2�, b = −
1

24
	 �4�

�k4 

k=0

= O�1� .

Here, the small parameter ��1 is proportional to �P− Pc,
where the parameter P stands for any of the parameters in
the problem, and Pc is the critical value of P corresponding
to the onset of the instability. In this case the range of the
wave numbers �k corresponding to the unstable modes
��
0� is small, �k��1, and the maximal growth rate
�max�4.

Go over to the moving frame and introduce the moving
frame coordinate, z̃=z+v0t, the long-scale coordinates in the

FIG. 3. Typical dispersion curves described by �26�: �a�
	1=1.1, 	2=0.3, �1=4.0, �2=3.0, �=30.0, �1=0.5, �2=0.4,
�̄2=0.6, b=2.1; �b� 	1=0.5, 	2=3.0, �1=1.2, �2=0.2, �=30.0,
�1=0.5, �2=0.6, �̄2=0.2, b=2.1; �c� 	1=0.3, 	2=1.5, �1=4.3,
�2=3.3, �=20.0, �1=1.5, �2=0.75, �̄2=0.7, b=1.5; �d� 	1=0.3,
	2=1.5, �1=5.3, �2=3.0, �=20.0, �1=0.5, �2=0.4, �̄2=0.8,
b=2.1.
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plane parallel to the MO and OE interfaces, X=�x, and
the slow time variable, T=�4t, and consider perturbations of
the electric potential and perturbations of the two planar
interfaces in the form of the expansions

� = ��0��z̃� + �2��1��z̃,X,T� + �4��2��z̃,X,T� + �6��3��z̃,X,T�

+ ¯ , �31�

� = ��0� + �2��1��X,T� + �4��2��X,T� + �6��3��X,T� + ¯ ,

�32�

where �= � �1

�2
� and ��0�= � 0

l
�.

Substitute the expansions �31� and �32� into the problem
�9�–�13�, to obtain a sequence of linear problems in even
orders of the small parameter �. The problem at order �2 is

A0��1� = 0, �33�

where A0=limk→0 A, det A0=0. Therefore, ��1� is the null
vector of A0,

��1� = 	1

1

U�X,T� , �34�

where U�X ,T� is an as yet unknown function.
The problem at order �4 is

A0��2� = u�2U , �35�

where the components of the vector u are cumbersome func-
tions of the system parameters. The solvability condition of
the problem �35� gives the condition for the instability
threshold, 2a=�2� /�k2=0, which is identically satisfied
since the parameters have been chosen such that a=O��2�;
the right-hand side of �35� must be carried out to the next
order.

The problem at order �6 is

A0��3� = u�2U + v��U�2 + w�4U + sUT, �36�

where the components of the vectors u, v, w, and s are
cumbersome functions of the system parameters.

The solvability condition for the problem at order �6 gives
the following evolution equation for the function U�X ,T�:

UT + a�2U + b�4U −
v0

2
��U�2 = 0, �37�

where � is the gradient operator acting on the long-scale
coordinates X, a and b are defined in �30�, and v0 is the
dimensional speed of the propagating oxide layer in the
steady state. The nonlinear term describes the correction of
the interface velocity projection on the z direction for a
slightly slant interface. Equation �37� is the well-known
Kuramoto-Sivashinsky equation that describes weakly non-
linear evolution in many systems with translation invariance
�31,32�, characterized by a monotonic instability with the
long-wave spectrum �30�, such as the thermodiffusive insta-
bility of a flame front �33�, the liquid film flow instability
�34,35�, as well as morphological instabilities of crystalliza-
tion fronts �36–38�. It has been extensively studied �see, e.g.,
�39�� and is known to exhibit cellular structures that vary

slowly in time and space in a chaotic manner. In our case, it
describes the nonlinear evolution of an unstable oxide layer
near the instability threshold, when the perturbation wave-
length is large compared to the oxide layer thickness.
The solution of this equation describes the shape of the MO
and OE interfaces. A typical solution of Eq. �37� in a particu-
lar moment of time is shown in Fig. 4. It strongly resembles
the initial stage of evolution of irregular pores in anodic
aluminum oxide observed in �10�.

VI. STRONGLY NONLINEAR LONG-WAVE EQUATIONS

The Kuramoto-Sivashinsky equation discussed above de-
scribes the system nonlinear evolution only near the instabil-
ity threshold, when P− Pc�2 , k� , ��4, and the pertur-
bations of the interface shape are small, �1,2�2. For certain
parameter values it is possible that the instability remains
long wave �the cutoff wave number is small� and the evolu-
tion still remains slow far from the instability threshold.
In this case it is possible to derive strongly nonlinear evolu-
tion equations for the shapes of the interfaces �1,2 in the
long-wave approximation, such that �1,2O�1�.

Thus, we assume that the parameters of the system are
such that the typical wavelength of the interfacial perturba-
tions is much larger than the oxide layer thickness. For the
sake of simplicity we neglect the dependence of the oxide
conductivity on the electric field, thus assuming f�E��1.
Consider the problem �9�–�13�, introduce the long-scale in-
plane coordinates X=�x, and the slow time T=�2t, consider
�1,2=�1,2�t ,T ,X�, �=�0�z ,X , t ,T�+�2�1�z ,X , t ,T�+¯, and
use the transformations �t→�t+�2�T, �→��, where the gra-
dient operator acts on the in-plane long-scale coordinates.
Then, from �9�–�13� one obtains the hierarchy of problems at
different orders of �.

The problem at zero order reads

�zz�0 = 0, �38�

z = �1: − �z�0 = �1e��1−�0�, �39�

�t�1 = 	1�z�0, �40�

z = �2: − �z�0 = e��0 − �2e−��0, �41�

�t�2 = − e��0 + 	2�2e−��0. �42�

From �38�–�42� one obtains

�0 = − E0z + �0, �0 = 1 + E0�1 −
1

�
ln

E0

�1
, �43�

where the electric field E0 is determined as the root of the
following transcendental equation:

E0
2 =

�1
2 exp���1 − E0��2 − �1���

�1 + �2 exp�− ��1 − E0��2 − �1���
, �44�

and the motion of the two interfaces is described by the
following system:
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�t�1 = − 	1E0 � F1
�0��E0�, �t�2 = − 	E0� −

	2�2

E0�

 � F2

�0��E0� ,

�45�

where

E0� = E0/2 + �E0
2/4 + �2. �46�

The problem at order O��2� reads

�zz�1 = − �2�0, �47�

z = �1: − �z�1 + ��1 · ��0

= �1e��1−�0�	1

2
���1�2 − ��1 − �1�

2�1
 , �48�

�T�1 = 	1��z�1 − ��1 · ��0� , �49�

z = �2: − �z�1 + ��2 · ��0

= e��0	1

2
���2�2 + ��1 − �2�

2�2

− �2e−��0	1

2
���2�2 − ��1 + �̄2�

2�2
 , �50�

�T�2 = − e��0	1

2
���2�2 + ��1 − �2�

2�2

+ 	2�2e−��0	1

2
���2�2 − ��1 + �̄2�

2�2
 . �51�

One obtains

�1 = − E1z + �1 + �2E0
z3

6
− �2�0

z2

2
, �52�

where E1 and �1 satisfy the following system of linear
equations:

E1�1 − �E0�1� + �E0�1

= � · 	1

2
�1

2 � E0 − �1 � �0
 +
1

2
E0���1�2

+ E0��	−
1

6
�1

3�2E0 +
1

2
�1

2�2�0
 − �1�
2�1� , �53�

E1�1 + �E0��2� − �E0��1

= � · 	1

2
�2

2 � E0 − �2 � �0
 +
1

2
E0���2�2

+ E0���	1

6
�2

3�2E0 −
1

2
�2

2�2�0
 − �2��
2�2� , �54�

where

E0� = E0� +
�2

E0�
, �2� =

1

E0�
	�2E0� + �̄2

�2

E0�

 .

For the evolution of the interfaces on the slow time scale
one obtains

�T�1 = 	1�− E1 + � · 	1

2
�1

2 � E0 − �1 � �0
�
� F1

�1��E0,�1,�2� , �55�

FIG. 4. Numerical solution of Eq. �37� in a
particular moment of time.
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�T�2 = − �	E0� +
	2�2

E0�

	− E1�2 + �1 +

1

6
�2

3�2E0

−
1

2
�2

2�2�0
 − 	E0� −
	2�2

E0�

1

2
���2�2

+ 	E0��2 +
	2�2

E0�
�̄2
�2�2 � F2

�1��E0,�1,�2� . �56�

Finally, introducing a composed time variable �= t+�2T,
we combine Eqs. �45�, �55�, and �56� to obtain a system of
long-wave, strongly nonlinear equations for the shapes of the
MO and OE interfaces,

���1 = F1
�0��E0� + F1

�1��E0,�1,�2� , �57�

���2 = F2
�0��E0� + F2

�1��E0,�1,�2� , �58�

where the functions F1,2
�0,1� are defined in Eqs. �45�, �55�, and

�56�, E0 is the solution of Eq. �44� which depends on the
local oxide layer thickness �2−�1, and E1 and �1 are the
solutions of the system �53� and �54�.

The system �57� and �58� describes the strongly nonlinear
evolution of the MO and OE interfaces in the long-wave
approximation, when the oxide layer thickness is much
smaller than the cutoff wavelength of the instability. One can
see that it is very cumbersome and difficult to analyze. It
simplifies significantly in the case when the rate of the oxide
reformation reaction can be neglected. For �2=0 one obtains
E0�=E0, and

���1 = − 	1E1 + 	1 � · 	1

2
�1

2 � E0 − �1 � �0
 − 	1E0,

�59�

���2 = − E1 + � · 	1

2
�2

2 � E0 − �2 � �0
 − E0, �60�

where E1 is determined by

E1�2 + �E0��2 − �1��

= � · 	1

2
��1

2 + �2
2� � E0 − ��1 + �2� � �0


+
1

2
E0����1�2 + ���2�2�

+ �E0	1

6
��2

3 − �1
3��2E0 −

1

2
��2

2 − �1
2��2�0


− E0��1�
2�1 + �2�

2�2� , �61�

�0 is defined by �43�, and E0 is the root of the transcendental
equation

E0 = ��1 exp	�

2
�1 − E0��2 − �1��
 . �62�

We shall further concentrate on solving the system �59� and
�60�.

We have represented the system �59� and �60� in the form
���=L�+ �N−L��, where �= � �1

�2
�, N is the right-hand side of

�59� and �60�, and L is N linearized around an initial value of
the oxide layer thickness, l. We have solved this system nu-
merically, by a pseudospectral method, with time integration
in the Fourier space, using the Crank-Nicolson scheme for
the linear operator L and the Adams-Bashforth scheme for
the nonlinear operator N−L, starting from small-amplitude
random perturbations of the two planar interfaces, with the
initial thickness of the oxide layer l0. At each time step Eq.
�62� was solved numerically, and the relations

�E0

�l
= −

�E0
2

2 + �lE0
,

�2E0

�l2 =
2�2E0

3�3 + �lE0�
�2 + �lE0�3 ,

where l=�2−�1, were used.
Figure 5 shows the numerical solution of the system �59�

and �60� at a particular moment of time corresponding to
well-developed pores. One can see the formation of spatially
irregular array of deep pores in the oxide layer that start
at the OE interface. The shape of the MO interface follows
the spatial pattern of pores in the oxide, however, with the
considerably smaller amplitude, which is consistent with
experimental observations.

The dynamics of the pore formation is shown in Fig. 6
�for computations performed in a domain twice larger than
that shown in Fig. 5�.

We also note that the pores have a parabolic shape in the
vicinity of the tip. We show below that in the particular case
of 	1=1, i.e., when the Faraday coefficients of the oxidation
and dissolution reactions are equal, the system �59� and �60�
has a self-similar solution in the form of a propagating pore
with a paraboloid shape. Indeed, for 	1=1 one obtains that
the local thickness of the oxide layer, �2−�1, does not depend
on time. Assume �2�x ,��−�1�x ,��= l=const; then Eq. �59�
for �1 is reduced to

���1 = a�2�1 − b���1�2 − E0, �63�

where

FIG. 5. Numerical solution of the system �59� and �60� at a
particular moment of time showing developed pores: �a� MO inter-
face �1�x ,y�; �b� OE interface �2�x ,y�. Here 	1=1.01, �1=10−5,
�=10.0, �1=0.5, �2=20.5, and the initial thickness of the oxide
layer is l0=0.1.
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a =
1

2
E0l +

E0��1 + �2�
2 + �E0l

, b =
E0�1 + �E0l�

2 + �E0l
.

Use the ansatz �1=A���r2+B���−E0� �r2=x2+y2� to obtain
from Eq. �63� a system of differential equations for A and B:

dA

d�
= − 4bA2,

dB

d�
= 4aA ,

the solution of which gives the following solution for �1:

�1 =
r2

4b� + c
+

a

b
ln�4b� + c� − E0� + const, �64�

where c is the initial pore “width.” Solution �64� describes a
pore with a paraboloid shape. The pore tip propagates with
the speed −E0+4a / �4b�+c�, approaching the constant speed
E0, and the pore widens with time. Note also that Eq. �63� is
the well-known Burgers equation that can be solved exactly
using the Cole-Hopf transformation which reduces Eq. �63�
to the diffusion equation; solution �64� can also be obtained
this way.

Note, however, that the long-wave system �59� and �60�
gives only a qualitative picture of the evolution of deep

pores. As one can see from Fig. 6, at late stages, when the
pores become very deep and also grow deeper in the metal,
the oxide layer thickness at the pore wall may become very
thin and cross zero. This is an artifact of the long-wave ap-
proximation which breaks down when the pore slope be-
comes large enough; Eqs. �59� and �60� cannot describe fur-
ther evolution of the system. Thus, although the system �59�
and �60� gives a correct qualitative picture of the pore for-
mation in an oxide layer, a fully nonlinear treatment is nec-
essary for the description of the evolution of deep pores.
Also note that the present theory does not consider such im-
portant processes as mass transport in electrolyte, especially
inside the electrical double layer and inside the pores, and
details of electrochemical kinetics at the interfaces. A com-
prehensive theory of self-assembly of porous structures in
anodic oxides would require a detailed consideration of such
processes which still remains to be done.
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